Critical Points for Variable Length Elastica With a Fixed Point Constraint Under Displacement Control

Author:

Wang Qiang1,Zou Hai-Lin1,Deng Zi-Chen1

Affiliation:

1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Abstract This paper studies a variable length elastica with a fixed point constraint by an assembly method that regards the whole elastica as an assembly of two components, i.e., pinned-clamped elasticas. The pinned-clamped elastica is obtained based on the post-buckled deformed shape with one internal inflection point. Thus, multiple coexisting solutions can be located accurately, which reveals three distinct equilibrium paths for the complete load–displacement curves. Under displacement control, two critical points on two equilibrium paths are found at saddle-node bifurcations. Interestingly, a new critical point is located at the boundary point of one equilibrium path, where the shapes of two pinned-clamped elasticas are two different post-buckled deformed shapes. Changing the location of the fixed point constraint allows the position of the boundary point to be easily manipulated, and the associated snap-through phenomenon can occur on different equilibrium paths. This flexible generation of the snap-through phenomenon is useful for designing engineering systems that require controllable snap-through.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3