Effect of Dynamic Chemical Etching on the Pore Structure, Permeability, and Mechanical Properties of Ti-Nb-Zr Scaffolds for Medical Applications

Author:

Sheremetyev V.1,Dubinskiy S.1,Iqbal M. A.2,Lukashevich K.1,Prokoshkin S.1,Brailovski V.3

Affiliation:

1. National University of Science, and Technology “MISIS”, Leninskiy prosp. 4, Moscow 119049, Russia

2. University of Trento, Via Sommarive, 9, 38123 Povo TN, Italy

3. École de technologie supeérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada

Abstract

Abstract Improving the post-processing of metallic porous tissue scaffolds is an essential step to create a new generation of superelastic implants for the replacement of damaged bone tissue. In this study, the dynamic chemical etching technique is applied to improve the permeability and to optimize the porous structure of Ti-Nb-Zr scaffolds fabricated by the powder metallurgy-based space holder technique. The etched scaffolds are characterized in terms of their porous structure geometry, permeability, and mechanical properties. It is shown that an increase in porosity from 49% to 54% during the etching is mainly due to an increase in the number of 100 to 800 μm-diameter pores, from 30% to 50% of them measuring from 100 to 300 μm in size. These changes in the porous structure lead to a significant increase of its permeability, i.e., from (0.1–15) × 10−11 m2 before etching to (44–91) × 10−11 m2, after etching; these permeability ranges corresponding to those of bone tissues. Furthermore, the etched scaffolds show systematically higher yield compressive stresses as compared to the as-sintered scaffolds of equivalent porosities. Finally, the highly permeable etched Ti-Nb-Zr scaffolds with a porosity varying from 40% to 60% exhibit an apparent Young’s modulus ranging from 8.6 to 1.9 GPa and an ultimate compressive strength from 650 to 190 MPa, which can be considered as a promising balance of properties for the potential use of these scaffolds as bone implants.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3