Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000

Author:

Park Hongrae1,Bernitsas Michael M.2,Ajith Kumar R.3

Affiliation:

1. Department of Mechanical Engineering, University of Michigan Ann Arbor, Michigan

2. CTO of Vortex Hydro Energy,Department of Naval Architecture and Marine Engineeringand Department of Mechanical Engineering, University of Michigan Ann Arbor, Michigan

3. Department of Naval Architecture and Marine Engineering,University of Michigan Ann Arbor, Michigan

Abstract

A passive control means to suppress flow-induced motions (FIM) of a rigid circular cylinder in the TrSL3, high-lift, flow regime is formulated and tested experimentally. The developed method uses passive turbulence control (PTC) consisting of selectively located roughness on the cylinder surface with thickness about equal to the boundary layer thickness. The map of “PTC-to-FIM,” developed in previous work, revealed robust zones of weak suppression, strong suppression, hard galloping, and soft galloping. PTC has been used successfully to enhance FIM for hydrokinetic energy harnessing using the VIVACE Converter. PTC also revealed the potential to suppress FIM to various levels. The map is flow-direction dependent. In this paper, the “PTC-to-FIM” map is used to guide development of FIM suppression devices that are flow-direction independent and hardly affect cylinder geometry. Experiments are conducted in the Low Turbulence Free Surface Water Channel of the University of Michigan on a rigid, horizontal, circular cylinder, suspended on springs. Amplitude and frequency measurements and broad field-of-view visualization reveal complex flow structures and their relation to suppression. Several PTC designs are tested to understand the effect of PTC roughness, location, coverage, and configuration. Gradual modification of PTC parameters, leads to improved suppression and evolution of a design reducing the VIV synchronization range. Over a wide range of high reduced velocities, VIV is fully suppressed. The maximum amplitude occurring near the system’s natural frequency is reduced by about 63% compared to the maximum amplitude of the smooth cylinder.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference26 articles.

1. Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding;Zdravkovich;J. Wind Eng. Ind. Aerodyn.

2. An Active Flow Control Strategy for the Suppression of Vortex Structures Behind a Circular Cylinder;Muddada;European Journal of Mechanics B/Fluids

3. Passive Control of Vortex-Induced Vibrations: An Overview;Kumar;Recent Patents on Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3