Riccati Discrete Time Transfer Matrix Method for Dynamic Modeling and Simulation of an Underwater Towed System

Author:

Wang Guoping1,Rong Bao2,Tao Ling3,Rui Xiaoting1

Affiliation:

1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing, P. R. C., 210094

2. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing, P. R. C., 210094; Nanchang Military Academy, Nanchang, P. R. C., 330103

3. Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, P. R. C., 230031

Abstract

Efficient, precise dynamic modeling and control of complex underwater towed systems has become a research focus in the field of multibody dynamics. In this paper, based on finite segment model of cable, by defining the new state vectors and deducing the new transfer equations of underwater towed systems, a new highly efficient method for dynamic modeling and simulation of underwater towed systems is presented and the pay-out/reel-in process of towed cable is studied. The computational efficiency and numerical stability of the proposed method are discussed. When using the method to study the dynamics of underwater towed systems, it avoids the global dynamic equations of system, and simplifies solving procedure. Irrespective of the degree of freedom of underwater towed system, the matrices involved in the proposed method are always very small, which greatly improve the computational efficiency and avoids the computing difficulties caused by too high matrix orders for complex underwater towed systems. Formulations of the method as well as numerical simulations are given to validate the proposed method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3