Structural Response to Sloshing Excitation in Membrane LNG Tank

Author:

Graczyk Mateusz1,Moan Torgeir1

Affiliation:

1. Centre for Ships and Ocean Structures (CeSOS) and the Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens v 10, 7491 Trondheim, Norway

Abstract

Sloshing in LNG membrane tanks may cause large pressures on the tank structure. To keep the cargo at the required low temperature, the tank structure is covered with an insulation, which has a much less strength than steel. The containment system is a very complex structure, which consists of different materials and requires a careful analysis with due consideration of the load process and dynamic effects in the response. The structural response of the membrane tank wall is investigated in this paper by finite element analyses. First, a modal composition of the structural response is studied. It is shown that many modes contribute to the response, which makes it difficult to establish the simplified DLF approach. The dynamic structural response to a typical sloshing impact is investigated in detail. An important observation is that, although the containment system has traditionally been modeled with a rigid support, the steel plate that supports the insulation may be flexible under the relevant load conditions. It is shown that the flexibility of the steel plate causes significant stress variation in the insulation. Different response patterns of the Mark III containment system are presented, and mechanisms that cause large stress concentrations and different response patterns in the static and dynamic cases are discussed. The scaling issue in view of the response is also investigated. Various scaling formulations may apply in post-processing sloshing experiments. While the Froude law yields conservative scaling for pressure magnitude, its conservatism for scaling the time needs to be investigated in view of the relevant dynamic response. By analyzing the structural response to the differently scaled loads, it is found that the Froude approach is conservative, but the scatter of results may be very large.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference18 articles.

1. Recent Developments of Structural Design of Ships Based on Direct Calculations—With Emphasis on LNG Carriers;Moan

2. Extreme Sloshing and Whipping-Induced Pressures and Structural Response in Membrane LNG Tanks;Graczyk;Ships and Offshore Structures

3. Sloshing Response of LNG Tank;Arswendy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3