Constrained Optimal Control of a Heaving Buoy Wave-Energy Converter

Author:

Hals Jørgen1,Falnes Johannes1,Moan Torgeir1

Affiliation:

1. Centre for Ships and Ocean Structures (CeSOS), Norwegian University of Science and Technology (NTNU), Otto Nielsens v. 10, 7491 Trondheim, Norway

Abstract

The question of optimal operation of wave-energy converters has been a key issue since modern research on the topic emerged in the early 1970s, and criteria for maximum wave-energy absorption soon emerged from frequency domain analysis. However, constraints on motions and forces give the need for time-domain modeling, where numerical optimization must be used to exploit the full absorption potential of an installed converter. A heaving, semisubmerged sphere is used to study optimal constrained motion of wave-energy converters. Based on a linear model of the wave-body interactions, a procedure for the optimization of the machinery force is developed and demonstrated. Moreover, a model-predictive controller is defined and tested for irregular sea. It repeatedly solves the optimization problem online in order to compute the optimal constrained machinery force on a receding horizon. The wave excitation force is predicted by use of an augmented Kalman filter based on a damped harmonic oscillator model of the wave process. It is shown how constraints influence the optimal motion of the heaving wave-energy converter, and also how close it is possible to approach previously published theoretical upper bounds. The model-predictive controller is found to perform close to optimum in irregular waves, depending on the quality of the wave force predictions. An absorbed power equal to or larger than 90% of the ideal constrained optimum is achieved for a chosen range of realistic sea states. Under certain circumstances, the optimal wave-energy absorption may be better in irregular waves than for a corresponding regular wave having the same energy period and wave-power level. An argument is presented to explain this observation.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference47 articles.

1. Power From Water Waves;Evans;Annu. Rev. Fluid Mech.

2. A Review of Wave-Energy Extraction;Falnes;Mar. Struct.

3. Power Conversion Systems for Ducks;Salter

4. Maximizing the Efficiency of Wave-Energy Plants Using Complex-Conjugate Control;Nebel;Proc. Inst. Mech. Eng., Part I: J. of Systems and Control Engineering

5. Salter, S. H., Jeffery, D. C., and Taylor, J. R. M., 1976, “The Architecture of Nodding Duck Wave Power Generators,” The Naval Architect0306-0209, Issue 1, pp. 21–24.

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3