Multi-Stage Modeling of a Stirling Thermocompressor

Author:

Thomas Seth1,Barth Eric J.1

Affiliation:

1. Vanderbilt University, Nashville, TN

Abstract

Stirling engines are silent, high-efficiency power sources that generate work by shuttling a working fluid between hot and cold volumes while exploiting the working fluid’s change in pressure. Stirling engines are able to use multiple sources of heat to create this needed temperature difference, making them ideally suited for diverse waste heat recovery applications. A novel application of this technology would be to reuse waste heat from one industrial process to generate compressed air to power a second, pneumatic process, thus increasing a manufacturing facility’s overall energy efficiency. In this paper the authors explore the expected performance of using a modified Stirling engine, known as a Stirling thermocompressor, to intake air at standard atmospheric conditions and compress it into a storage container. Simulations were conducted with a multi-stage experimentally validated dynamic model, using input variables that match the author’s physical prototype. Models employing 5 or more thermocompressor stages predicted a 10-fold increase in compressed air pressure compared to ambient conditions. Future work will experimentally verify the paper’s conclusions.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3