Deep Learning for Prediction of Print Parameters and Realized Electrical Performance and Geometry on Inkjet Platform

Author:

Lall Pradeep1,Kulkarni Shriram1,Soni Ved1,Goyal Kartik1,Miller Scott2

Affiliation:

1. Auburn University , Auburn, Alabama, United States

2. NextFlex National Manufacturing Institute , San Jose, California, United States

Abstract

Abstract A closed-loop deep learning approach for correlating the print parameters with realized electrical performance and geometry estimations on an inkjet platform has been presented in this paper. An estimate of the changes in the print parameters and the recognized print dimension is necessary to print reliable and fine conductive traces. The inks used for this analysis are both particle and particle-free silver inks, and the comparison of the same is also studied. A closed-loop control algorithm is used to attain the desired electrical and geometrical values by changing the print parameters without any user intervention. Sensing is achieved by an automatic print parameter sensing system using a camera that captures the print to identify the geometry and dimension of the same. Once the realized print parameters are determined, a deep learning neural network regression model based on these parameters is used to predict the desired input print parameters, which are used to achieve the desired geometry and dimension of the print. These new parameter values are passed on to the printing software to optimize the print and attain the desired geometry and characteristics.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Print Parameters on Mechanical and Electrical Properties of Conductive Traces Printed Using Water-Based Silver Nanoparticle Ink on Inkjet Platform;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

2. Prediction of Print Geometry and Electrical Performance of InkJet Printed Electrical Components Using Statistical Models for Closed Loop Control;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3