Print-Consistency and Process-Interaction for Inkjet-Printed Copper on Flexible Substrate

Author:

Lall Pradeep1,Goyal Kartik1,Schulze Kyle1,Hill Curtis2

Affiliation:

1. Auburn University, Auburn, Alabama, United States

2. QuantiTech Inc., Huntsville, Alabama, United States

Abstract

Abstract Printed electronics is a fastest growing and emerging technology that have shown much potential in several industries including automotive, wearables, healthcare, and aerospace. Its applications can be found not only in flexible but also in large area electronics. The technology provides an effective and convenient method to additively deposit conductive and insulating materials on any type of substrate. Comparing with traditional manufacturing processes, which involves chemical etching, this technology also comes to be relatively environmental friendly. Despite its status, it is not without its challenges. Starting from the material being compatible in the printer equipment to the point of achieving fine resolutions, and with excellent properties are some of the challenges that printed electronics face. Among the myriad of printing technologies such as Aerosol Jet, micro-dispensing, gravure printing, screen printing, Inkjet printing, Inkjet has gained much attention due to its low-cost, low material consumption, and roll-to-roll capability for mass manufacturing. The technology has been widely used in home and office, but recently gained interest in printed electronics in a research and development setting. Conductive materials used in Inkjet printing generally comprises of metal Nanoparticles that need to be thermally sintered for it to be conductive. The preferred metal of choice has been mostly silver due to its excellent electrical properties and ease in sintering. However, silver comes to be expensive than its counterpart copper. Since copper is prone to oxidation, much focus has been given towards photonic sintering that involves sudden burst of pulsed light at certain energy to sinter the copper Nanoparticles. With this technique, only the printed material gets sintered in a matter of seconds without having a great impact on its substrate, due to which it is also preferred in low temperature applications. With all the knowledge, there is still a large gap in the process side with copper where it is important to look how the print process affects the resolution of the print along with the effect of post-print processes on electrical and mechanical properties. In this paper, a copper Inkjet ink is utilized for understanding the effect of Inkjet print parameters on the ejected droplet and its resolution. Post-print process is also quantified using a photonic sintering equipment for excellent electrical and mechanical properties. To demonstrate the complete process, commercial-off-the-shelf components will also be mounted on the additively printed pads via Inkjet. Statistically, control charting technique will be utilized to understand the capability of the Inkjet process.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications;Polymers;2023-07-29

2. Demonstration of Functional Circuits with Surface Mount Devices on Sustainable Water-Based Inkjet Printed Metallization;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

3. Component Attachment to Inkjet Additive Printed Circuits to Achieve Flexible Signal Filters using Silver and Copper Nanoparticle Metal Inks;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

4. Reliability of Component Attachment using ECA and LTS on Flexible Additively Printed Ink-Jet Circuits for Signal-Filtering in Wearable Applications;2022 IEEE 72nd Electronic Components and Technology Conference (ECTC);2022-05

5. Resistive Sensors for Smart Objects: Analysis on Printing Techniques;IEEE Transactions on Instrumentation and Measurement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3