Thermal Optimization of a Silicon Carbide, Half-Bridge Power Module

Author:

Moreno Gilberto1,Major Joshua1,DeVoto Douglas1,Khan Faisal1,Narumanchi Sreekant1,Feng Xuhui1,Paret Paul1

Affiliation:

1. National Renewable Energy Laboratory , Golden, Colorado, United States

Abstract

Abstract This project describes the modeling process to design the packaging and heat exchanger for a half-bridge wide-bandgap (WBG) power semiconductor module. The module uses two silicon carbide, metal-oxide-semiconductor field-effect transistor (MOSFET) devices per switch position that are soldered to an aluminum nitride, direct-bond copper (DBC) substrate. A baseplate cooling configuration (e.g., no thermal grease) is used along with a water-ethylene glycol, jet-impingement-style heat exchanger. The heat exchanger was designed to be fabricated using prototyping equipment from the National Renewable Energy Laboratory, complies with automotive standards (for minimal channel sizes, flow rates, and coolant), and considers reliability aspects (i.e., erosion/corrosion). Device-scale computational fluid dynamics (CFD) is used first to design the slot jet impingement cooling configuration and compute the effective heat transfer coefficient (HTC) of the concept. The computed HTCs are then used as boundary conditions for a finite element study to optimize the package geometry (e.g., device layout and baseplate thickness) to minimize thermal resistance and minimize temperature variation between the module’s four devices. Finally, a fluid manifold is designed to generate the slot jets and cool the devices. Module-scale CFD predicts a relatively low junction-to-fluid thermal resistance of 16.7 mm2·K/W, a 1.4°C temperature variation between devices, and a total pressure drop of 5,860 Pa (0.85 psi) for the design. The thermal resistance of the module design is about 67% lower than the 2015 BMW i3 power electronics/modules thermal resistance.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3