Numerical Simulation of the Flow Through the Rotor of a Radial Inflow Turbine

Author:

Amedick V.1,Simon H.1

Affiliation:

1. University of Duisburg, Duisburg, Germany

Abstract

An existing Navier-Stokes solver to simulate the turbulent transonic flow using block-structured grids has been used to optimize the guide vanes of radial inflow turbines. The code has been extended to calculate the flow in the rotating parts of turbomachines and is now used to simulate the turbulent flow through the rotor of a radial inflow turbine. The results of three calculations are presented (inviscid and viscous flow without tip clearance, viscous flow with tip clearance). The flowfield is investigated at design conditions where a large incidence angle exists at the entrance of the rotor. Unsteady effects are neglected. The comparison of the results of the inviscid and viscous simulations shows the strong influence of the viscous forces. Strong secondary flow patterns are found in the vicinity of the blades and the walls. Special attention has been paid to the analysis of the flow through the gap between the casing and the blades. The determination of the mass flow rate through the gap shows that mass is transported from the suction towards the pressure side of the blade at the beginning of the blade (6.1% of the blade length). Thereafter, the mass flow through the gap changes its direction.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leakage flow characteristic of radial inflow turbine adopted in CAES system: Review on progress;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-08-30

2. 1998 Turbomachinery Committee Best Paper Award: An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine;Journal of Turbomachinery;1999-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3