Experimental Study of the Unsteady Aerodynamics in a Linear Cascade With Low Reynolds Number Low Pressure Turbine Blades

Author:

Murawski Christopher G.1,Sondergaard Rolf1,Rivir Richard B.1,Vafai Kambiz2,Simon Terrence W.3,Volino Ralph J.4

Affiliation:

1. Aeropropulsion and Power Directorate, Wright Laboratory, USAF, Wright Patterson AFB, OH

2. Ohio State University, Columbus, OH

3. University of Minnesota, Minneapolis, MN

4. U.S. Naval Academy, Annapolis, MD

Abstract

Low pressure turbines in aircraft experience large changes in flow Reynolds number as the gas turbine engine operates from takeoff to high altitude cruise. Low pressure turbine blades are also subject to regions of strong acceleration and diffusion. These changes in Reynolds number, strong acceleration, as well as elevated levels of turbulence can result in unsteady separation and transition zones on the surface of the blade. An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. The intent was to assess the effects of changes in Reynolds number, and freestream turbulence intensity. Flow Reynolds numbers, based on exit velocity and suction surface length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a slightly rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number resulted in a shrinkage of the separation region on the suction surface. Increasing both flow Reynolds numbers and freestream turbulence intensity compounded these effects such that at a Reynolds number of 300,000 and a freestream turbulence intensity of 8.1%, the separation zone was almost nonexistent. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. The width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. Numerical simulations were performed in support of experimental results. The numerical results compare well qualitatively with the low freestream turbulence experimental cases.

Publisher

American Society of Mechanical Engineers

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3