A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation

Author:

Huang J. L.1,Zhu W. D.2

Affiliation:

1. Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou, 510275, China e-mail:

2. Department of Mechanical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 e-mail:

Abstract

Quasi-periodic motion is an oscillation of a dynamic system characterized by m frequencies that are incommensurable with one another. In this work, a new incremental harmonic balance (IHB) method with only two time scales, where one is one of the m frequencies, referred to as a fundamental frequency, and the other is an interval distance of two adjacent frequencies, is proposed for quasi-periodic motions of an axially moving beam with three-to-one internal resonance under single-tone external excitation. It is found that the interval frequency of every two adjacent frequencies, located around the fundamental frequency or one of its integer multiples, is fixed due to nonlinear coupling among resonant vibration modes. Consequently, only two time scales are used in the IHB method to obtain all incommensurable frequencies of quasi-periodic motions of the axially moving beam. The present IHB method can accurately trace from periodic responses of the beam to its quasi-periodic motions. For periodic responses of the axially moving beam, the single fundamental frequency is used in the IHB method to obtain solutions. For quasi-periodic motions of the beam, the present IHB method with two time scales is used, along with an amplitude increment approach that includes a large number of harmonics, to determine all the frequency components. All the frequency components and their corresponding amplitudes, obtained from the present IHB method, are in excellent agreement with those from numerical integration using the fourth-order Runge–Kutta method.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3