Effects of Wakes on Blade Endwall Heat Transfer in High Turbulence Intensity

Author:

Park Sehjin1,Sohn Ho-Seong1,Cho Hyung Hee1,Moon Hee Koo1,Han Yang Seok2,Ueda Osamu3

Affiliation:

1. Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

2. Power Generation Department, Korea Southern Power Co., Ltd., BIFC B/D, 40 Munhyeongeumyung-ro, Nam-gu, Busan 48400, Korea

3. Takasago Power Systems Service Department, Mitsubishi Hitachi Power Systems, Ltd., 2-chōme-1-1 Araichō Shinhama, Takasago, Hyogo 676-0008, Japan

Abstract

Abstract Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2% and 7.5%) in the cases with wakes (rod passing Strouhal number, S = 0.3). The flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea government Ministry of Trade

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3