A Gaussian Process Model-Guided Surface Polishing Process in Additive Manufacturing

Author:

Jin Shilan1,Iquebal Ashif1,Bukkapatnam Satish1,Gaynor Andrew2,Ding Yu1

Affiliation:

1. Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843

2. Design Optimization Team, Weapons and Materials Research Directorate, Army Research Lab, Aberdeen Proving Ground, Adelphi, MD 21005

Abstract

Abstract Polishing of additively manufactured products is a multi-stage process, and a different combination of polishing pad and process parameters is employed at each stage. Pad change decisions and endpoint determination currently rely on practitioners’ experience and subjective visual inspection of surface quality. An automated and objective decision process is more desired for delivering consistency and reducing variability. Toward that objective, a model-guided decision-making scheme is developed in this article for the polishing process of a titanium alloy workpiece. The model used is a series of Gaussian process models, each established for a polishing stage at which surface data are gathered. The series of Gaussian process models appear capable of capturing surface changes and variation over the polishing process, resulting in a decision protocol informed by the correlation characteristics over the sample surface. It is found that low correlations reveal the existence of extreme roughness that may be deemed surface defects. Making judicious use of the change pattern in surface correlation provides insights enabling timely actions. Physical polishing of titanium alloy samples and a simulation of this process are used together to demonstrate the merit of the proposed method.

Funder

Army Research Lab

NSF

Texas A&M Office

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3