Affiliation:
1. Hamburg University of Technology, Hamburg, Germany
Abstract
Shallow foundation structures offer ecological benefits compared to pile foundations as less noise is emitted at sea floor level during construction process. On the other hand, shallow offshore foundations can rarely be placed on top of the sea floor. Weak soils usually need to be excavated to place the foundation structure on more stable ground and thus, anthropogenic submarine pits result. Steep but stable slopes of the pit meet both economic and ecologic aims as they minimise material movement and sediment disturbance. According to Terzaghi [1] the angle β between slope and the horizontal of the ground surface of cohesionless soil is at most equal to the critical state friction angle φc. However, it can be observed that natural submarine slopes of sandy soils are always much more shallow. Artificial (temporary) slopes do not appear and behave as natural submarine slopes, since the latter are already shaped by perpetual loads of waves, tide and mass movements. Physical simulations of different scales were presented at the OMAE 2011 [2] to analyse the stability of artificial submarine slopes of sandy soil in the North Sea. The laboratory tests focused on gravitational forces and impacts from the excavation processes. This paper presents additional numerical simulations of wave-induced bottom pressure on the suggested submarine foundation pits. Furthermore, in-situ tests will be performed in 2012 and 2013. Both dredging process and resulted foundation pits will be considerably surveyed.
Publisher
American Society of Mechanical Engineers
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献