Model Experiment of a SPAR Type Offshore Wind Turbine in Storm Condition

Author:

Kokubun Kentaroh1,Ishida Shigesuke1,Nimura Tadashi1,Chujo Toshiki1,Yoshida Shigeo2,Utsunomiya Tomoaki3

Affiliation:

1. National Maritime Research Institute, Tokyo, Japan

2. Fuji Heavy Industries Ltd., Utsunomiya, Tochigi, Japan

3. Kyoto University, Kyoto, Kyoto, Japan

Abstract

Wind power has the primary potential among renewable energies. Because Japan consists of little flat land and little shallow coast, floating wind turbine must be developed to make wind farms in Japan. Therefore, Japanese national demonstration project of Floating Offshore Wind Turbine (FOWT) was started in 2010FY by Ministry of the Environment and a SPAR-type FOWT is under construction at present. The floater is planned to be hybrid, consists of upper part by steal and lower part by pre-stressed concrete. Four fins are attached around the floater to suppress yaw motion. The floater is moored by three catenary chains. In order to confirm the safety of the FOWT in storm condition, experiments of a scale of 1/34.5 model were carried out at Ocean Engineering Basin of National Maritime Research Institute (NMRI), Japan. The draft of SPAR, the height of hub above sea level and the diameter of rotor of the model are 1.07m, 0.68m and 0.64m, respectively. In all experiments, blades are fixed to the hub under feathering condition and the hub is irrotational and fixed to the tower because this wind turbine is assumed to be under the storm condition, but wind blows transversely to the nacelle to give the maximum wind force. Water depth of the basin is smaller than the planned sea area on a reduced scale of model, therefore, springs and wires were used instead of chains in order to correspond to characteristics of horizontal mooring tension. Environmental forces are wind, wave and current in 50-year return period. Tensions of the 3 moorings and the motion of the model are measured in condition of wind and/or wave and/or current. Three kinds of direction of wind are adopted. One is the same direction as the wave and current, another is perpendicular to the wave and current, and the other is against to the wave and current. Besides the intact conditions a mooring-line-cut experiment in a storm condition was also conducted. Moreover, the effect of vortex induced motion (VIM), which occurs in current, was discussed. The results of the model experiment are reported to show the sufficient safety of this FOWT.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3