Affiliation:
1. National Maritime Research Institute, Tokyo, Japan
2. Fuji Heavy Industries Ltd., Utsunomiya, Tochigi, Japan
3. Kyoto University, Kyoto, Kyoto, Japan
Abstract
Wind power has the primary potential among renewable energies. Because Japan consists of little flat land and little shallow coast, floating wind turbine must be developed to make wind farms in Japan. Therefore, Japanese national demonstration project of Floating Offshore Wind Turbine (FOWT) was started in 2010FY by Ministry of the Environment and a SPAR-type FOWT is under construction at present.
The floater is planned to be hybrid, consists of upper part by steal and lower part by pre-stressed concrete. Four fins are attached around the floater to suppress yaw motion. The floater is moored by three catenary chains.
In order to confirm the safety of the FOWT in storm condition, experiments of a scale of 1/34.5 model were carried out at Ocean Engineering Basin of National Maritime Research Institute (NMRI), Japan. The draft of SPAR, the height of hub above sea level and the diameter of rotor of the model are 1.07m, 0.68m and 0.64m, respectively. In all experiments, blades are fixed to the hub under feathering condition and the hub is irrotational and fixed to the tower because this wind turbine is assumed to be under the storm condition, but wind blows transversely to the nacelle to give the maximum wind force. Water depth of the basin is smaller than the planned sea area on a reduced scale of model, therefore, springs and wires were used instead of chains in order to correspond to characteristics of horizontal mooring tension.
Environmental forces are wind, wave and current in 50-year return period. Tensions of the 3 moorings and the motion of the model are measured in condition of wind and/or wave and/or current. Three kinds of direction of wind are adopted. One is the same direction as the wave and current, another is perpendicular to the wave and current, and the other is against to the wave and current.
Besides the intact conditions a mooring-line-cut experiment in a storm condition was also conducted. Moreover, the effect of vortex induced motion (VIM), which occurs in current, was discussed. The results of the model experiment are reported to show the sufficient safety of this FOWT.
Publisher
American Society of Mechanical Engineers
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献