Affiliation:
1. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Kensington, Australia
Abstract
Squeeze film dampers introduce nonlinear motion dependent damper forces into otherwise linear rotor bearing systems, thereby considerably complicating their analysis. Noncircular orbit type dampers, such as unsupported or uncentralized dampers, have generally necessitated transient solutions, which are computationally prohibitive for design studies of large order systems, particularly for systems with low damping. By utilizing harmonic balance with appropriate condensation, it is possible to considerably reduce the number of simultaneous nonlinear equations inherent to this approach. The stability (linear) of the equilibrium solutions may be conveniently evaluated using Floquet theory, particularly if the damper force components are evaluated in fixed, rather than rotating, reference frames. The versatility of this technique is illustrated on systems of increasing complexity with and without damper centralizing springs. Of particular interest, is its applicability to unsupported systems illustrating how such systems can lift off and, with further increase in speed, the damper forces can be linearized about the orbit center.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献