Dynamic Tire Force Control by Semiactive Suspensions

Author:

Yi Kyongsu1,Hedrick Karl1

Affiliation:

1. Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

Abstract

This paper presents a semiactive suspension control algorithm to reduce dynamic tire forces and it includes the development and application of observers for bilinear systems with unknown disturbances. The peak dynamic tire forces, which are greatly in excess of static tire forces, are highly dependent on the dynamic characteristics of vehicle suspensions. One way to reduce dynamic tire forces is to use advanced suspension systems such as semiactive suspensions. Semiactive control laws to reduce dynamic tire forces are investigated and a bilinear observer structure for bilinear systems with unknown disturbances is formulated such that the estimation error is independent of the unknown external disturbances and the error dynamics are stable for bounded inputs. The motivation for the development of a disturbance decoupled bilinear observer comes from the state estimation problem in semiactive suspensions. An experimental study on the performance of a semiactive suspension to reduce the dynamic tire forces is made via a laboratory vehicle test rig. The semiactive suspension has been implemented by using a modulable damper, accelerometers and a personal computer. Experimental studies show that the performance of the semiactive suspension is close to that of the best passive suspension for all frequency ranges in the sense of minimizing the dynamic tire forces and that the dynamic tire force can be replaced by the estimated one. The dynamic tire forces for both passive and semiactive control test cases are compared to show the potential of a semiactive suspension to reduce the dynamic tire forces.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3