Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control

Author:

Tang Lie1,Landers Robert G.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65401-0050

Abstract

Heat input regulation is crucial for deposition quality in laser metal deposition (LMD) processes. To control the heat input, melt pool temperature is regulated using temperature controllers. Part I of this paper showed that, although online melt pool temperature control performs well in terms of tracking the temperature reference, it cannot guarantee consistent track morphology. Therefore, a new methodology, known as layer-to-layer temperature control, is proposed in this paper. The idea of layer-to-layer temperature control is to adjust the laser power profile between layers. The part height profile is measured between layers, and the temperature is measured online. The data are then utilized to identify the parameters of a LMD process model using particle swarm optimization. The laser power profile is then computed using iterative learning control, based on the estimated process model and the reference melt pool temperature of the next layer. The deposition results show that the layer-to-layer temperature controller is capable of not only tracking the reference temperature, but also producing a consistent track morphology.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference15 articles.

1. Process and Prosperities Control in Laser Aided Direct Metal/Materials Deposition Process;Choi

2. Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS);Griffith

3. Melt Pool Temperature Control Using LabVIEW in Nd:YAG Laser Blown Powder Cladding Process;Salehi;Int. J. Adv. Manuf. Technol.

4. Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process;Han;ASME J. Heat Transfer

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3