Response of Pounding Dynamic Vibration Neutralizer Under Harmonic and Random Excitation

Author:

Masri Sami F.1,Caffrey John P.2

Affiliation:

1. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-2531 e-mail:

2. Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-2531

Abstract

Exact steady-state solutions are obtained for the motion of an single-degree-of-freedom (SDOF) system that is provided with a highly nonlinear auxiliary mass damper (AMD), which resembles a conventional dynamic vibration neutralizer (DVN), whose relative motion with respect to the primary system is constrained to remain within a specified gap, thus operating as a “pounding DVN.” This configuration of a conventional DVN with motion-limiting stops could be quite useful when a primary structure with a linear DVN is subjected to transient loads (e.g., earthquakes) that may cause excessive relative motion between the auxiliary and primary systems. Under the assumption that the motion of the nonlinear system under harmonic excitation is undergoing steady-state motion with two impacts per period of the excitation, an exact, closed-form solution is obtained for the system motion. This solution is subsequently used to develop an approximate analytical solution for the stationary response of the pounding DVN when subjected to random excitation with white spectral density and Gaussian probability distribution. Comparison between the analytically estimated rms response of the primary system and its corresponding response obtained via numerical simulation shows that the analytical estimates are quite accurate when the coupling (tuning parameters) between the primary system and the damper are weak, but only moderately accurate when the linear components of the tuning parameters are optimized. It is also shown that under nonstationary, the pounding DVN provides slightly degraded performance compared to the linear one but simultaneously limits the damper-free motion to specified design constraints.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

1. The Theory of the Dynamic Vibration Absorber;ASME J. Appl. Mech.,1928

2. Discussion of the Theory of Dynamic Vibration Absorber;ASME J. Appl. Mech.,1928

3. Theory of the Dynamic Vibration Neutralizer With Motion-Limiting Stops;ASME J. Appl. Mech.,1972

4. Minimal Structural Response Under Random Excitation Using Vibration Absorbers;Earthq. Eng. Struct. Dyn.,1974

5. Vibration of Simply Supported Rectangular and Square Plates to Which Lumped Masses and Dynamic Vibration Absorbers Are Attached;Acoust. Soc. Am.,1974

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3