High-Dimensional Reliability-Based Design Optimization Involving Highly Nonlinear Constraints and Computationally Expensive Simulations

Author:

Li Meng1,Sadoughi Mohammadkazem1,Hu Chao2,Hu Zhen3,Eshghi Amin Toghi4,Lee Soobum4

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 e-mail:

2. Mem. ASME Department of Mechanical Engineering and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 e-mails: ;

3. Mem. ASME Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI 48128 e-mail:

4. Mem. ASME Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250 e-mail:

Abstract

Reliability-based design optimization (RBDO) aims at optimizing the design of an engineered system to minimize the design cost while satisfying reliability requirements. However, it is challenging to perform RBDO under high-dimensional uncertainty due to the often prohibitive computational burden. In this paper, we address this challenge by leveraging a recently developed method for reliability analysis under high-dimensional uncertainty. The method is termed high-dimensional reliability analysis (HDRA). The HDRA method optimally combines the strengths of univariate dimension reduction (UDR) and kriging-based reliability analysis to achieve satisfactory accuracy with an affordable computational cost for HDRA problems. In this paper, we improve the computational efficiency of high-dimensional RBDO by pursuing two new strategies: (i) a two-stage surrogate modeling strategy is adopted to first locate a highly probable region of the optimum design and then locally refine the accuracy of the surrogates in this region; and (ii) newly selected samples are updated for all the constraints during the sequential sampling process in HDRA. The results of two mathematical examples and one real-world engineering example suggest that the proposed HDRA-based RBDO (RBDO-HDRA) method is capable of solving high-dimensional RBDO problems with higher accuracy and comparable efficiency than the UDR-based RBDO (RBDO-UDR) and ordinary kriging-based RBDO (RBDO-kriging) methods.

Funder

Directorate for Engineering

Directorate for Computer and Information Science and Engineering

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3