Experimental Investigation of Radiative Transfer Between Metallic Surfaces at Cryogenic Temperatures

Author:

Domoto G. A.1,Boehm R. F.2,Tien C. L.3

Affiliation:

1. Columbia University, New York, N. Y.

2. University of Utah, Salt Lake City, Utah

3. University of California, Berkeley, Calif.

Abstract

Experimental measurements of the radiative heat flux between two parallel copper disks in the liquid-helium temperature range are presented. The temperature levels investigated were primarily for the higher temperature disk (emitter) at 10.0 deg K and 15.1 deg K and the lower temperature disk (receiver) at approximately 4.5 deg K. For the 15.1 deg K emitter temperature, the spacing was varied from 0.201 cm to 0.001 cm. For the 10 deg K emitter case, the spacing was varied from 0.044 cm to 0.005 cm. Experimental data at small spacings show a definite spacing dependence of radiative transfer which agree qualitatively with the predicted result. Based on the measurements at large spacings, an estimate of the total hemispherical emissivity for the copper surfaces in the liquid-helium temperature range indicates a value of 0.015, which is approximately one order of magnitude higher than predicted. The possible causes for the discrepancies are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3