A Computation and Comparison With Measurements of Transonic Flow in an Axial Compressor Stage With Shock and Boundary Layer Interaction

Author:

Singh U. K.1

Affiliation:

1. Mechanical Engineering Laboratory, GEC Power Engineering Ltd., Whetstone, Leicester, England

Abstract

The flow field within a transonic axial flow compressor stage has been computed using a three-dimensional time-marching technique. Limited viscous effects are considered by including a calculation of the blade surface boundary layers. The boundary layer calculation forms an integral part of the whole computation scheme, which consists of, respectively: (i) inviscid Mach number calculations, (ii) blade surface boundary layer displacement thickness calculations, (iii) inviscid Mach number calculations with mass flow adjustment (based on the calculated displacement thicknesses) on the blade surfaces. The boundary layer computation is done by using integral calculation methods and has specifically been developed to account for a shock and boundary layer interaction (should one exist). Comparisons are made with measured results obtained with an advanced laser velocimeter. The calculated Mach number contours are in extremely good agreement with the experimental results. It is concluded that the calculation technique is a useful tool in the design of transonic axial flow turbomachines.

Publisher

ASME International

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3