Interpretations of the Thickness of Lubricant Films in Rolling Contact. 2. Influence of Possible Rheological Factors

Author:

Bell J. C.1,Kannel J. W.1

Affiliation:

1. Lubrication Mechanics Division, Battelle Columbus Laboratories, Battelle Memorial Institute, Columbus, Ohio

Abstract

Several theories involving rarely analyzed but yet realistic rheological effects have been developed in an effort to find why lubricant film thicknesses in rolling contact, as measured by X rays for rigorous operating conditions, do not obey simple theories well, especially with respect to load effect. The analysis is based on actions in the inlet zone, using the approximate geometry implied for previous simple theories. Effects investigated include a generalized pressure variation of viscosity, a non-Newtonian rheology of Ree-Eyring form, and a time delay in pressure effect on viscosity. Simple formulas are found for the influence of all these factors on lubricant film thickness. The time delay theory is found to provide the best correlation with experimental measurements of film thickness, and it is suggested to offer an attractive field for further research embracing friction effects as well as film thickness.

Publisher

ASME International

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3