Trajectory Planning and Tracking Using Decoupled CBF-QPs for Safe Navigation of Quadrotors

Author:

Khan Sufyan Hafeez12ORCID,Ghaffari Azad32

Affiliation:

1. Department of Mechanical Engineering, Wayne State University , Detroit, MI 48202

2. Wayne State University

3. Department of Physics, Computer Science, and Engineering, Christopher Newport University , Newport News, VA 23606

Abstract

Abstract Control barrier function-based quadratic program (CBF-QP) provides an avenue for agile and numerically efficient obstacle avoidance algorithms. However, the CBF-QP methods may lead to lengthy detours and undesirable avoidance maneuvers. This paper proposes a bi-level CBF-QP for the safe navigation of quadrotors. A Planning-QP is proposed to create a safe reference trajectory that shadows the actual reference trajectory with prescribed avoidance acceleration, velocity, distance, and direction during the avoidance maneuver. A control Lyapunov function (CLF) ensures that modified reference closely matches the actual reference outside the avoidance regions and multiple control barrier functions (CBFs) ensure the safety and smoothness of the avoidance trajectory. Model uncertainties can undermine the safety of the quadrotor while tracking the modified reference. Hence, a Tracking-QP is designed to achieve accurate tracking with ensured safe maneuvering around obstacles, where a new CBF is constructed to prevent actuator saturation. Prescribed attitude bounds are ensured via additional acceleration constraints in the Tracking-QP. The proposed method is validated using numerous experiments involving various static obstacles where the quadrotor carries different payloads.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3