Thermal Performance of Pin-Fin Fan-Sink Assemblies

Author:

Wirtz R. A.1,Sohal R.1,Wang H.1

Affiliation:

1. Mechanical Engineering Department, MS312, University of Nevada, Reno, Reno, NV 89557

Abstract

Experiments are reported on the thermal performance of model fan-sink assemblies consisting of a small axial flow fan which impinges air on a square array of pin-fins. Cylindrical, square, and diamond shape cross section pin-fins are considered. The pin-fin heat transfer coefficient is found to be maximum immediately under the fan blades and minimum below the fan hub and near the corners of the array. The overall heat sink thermal resistance, R, decreases with an increase in either applied pressure rise or fan power and fin height. At fixed applied pressure rise, R is minimized when the fin pitch-to-diameter ratiois maximum. At fixed fan power, R is minimized when the pitch-to-diameter ratio is reduced toward unity. Finally, cylindrical pin-fins give the best overall fan-sink performance.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference6 articles.

1. Larson E. D. , and SparrowE. M., 1982, “Performance Comparisons Among Geometrically Different Pin-Fin Arrays Situated in an Oncoming Longitudinal Flow,” International Journal of Heat Mass Transfer, Vol. 25, pp. 723–725.

2. Mansuria, M. S., and Kamath, V. 1994, “Design Optimization of a High-Performance Heat-Sink/Fan Assembly,” Heat Transfer in Electronic Systems, R. A. Wirtz, D. Agonafer, C. H. Amon, S. Lee, and L.-T. Yeh, eds., HTD-Vol. 292, pp. 95–104, ASME Press, New York, NY.

3. Sathe, S., Kelkar, K. M., Tai, C., Lamb, C., and Patankar, S. V., 1993, “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink,” Advances in Electronic Packaging, EEP-Vol. 4–2, pp. 893–898.

4. Sohal, R., 1994 “Thermal Performance of Cylindrical Pin-Fin Fan-Sink Assemblies,” M.S. Thesis, Mechanical Engineering Department, University of Nevada, Reno, Nevada, 89557.

5. Sparrow E. M. , and LarsonE. D., 1982, “Heat Transfer From Pin-Fins Situated in an Oncoming Longitudinal Flow Which Turns to Crossflow,” International Journal of Heat Mass Transfer, Vol. 25, pp. 603–614.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forced convection heat transfer enrichment of geometrically customized circular cylinder: A numerical approach;Numerical Heat Transfer, Part A: Applications;2023-11-09

2. Evolutionary design with freedom - Fin shapes and entrance length channels for heat sinks;International Communications in Heat and Mass Transfer;2023-10

3. Heat exchanger with semi-circular tubes and mountings for effective heat transfer;Numerical Heat Transfer, Part A: Applications;2023-04-04

4. Thermal Performance of Hollow Hybrid Fin Heat Sinks Under Air Impingement;IEEE Transactions on Components, Packaging and Manufacturing Technology;2021-11

5. Numerical investigation of thermo-hydrodynamic performance of triangular pin fin heat sink using nano-fluids;Thermal Science and Engineering Progress;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3