Evaporation Rate Model for a Natural Convection Glazed Collector/Regenerator

Author:

Nelson D. J.1,Wood B. D.2

Affiliation:

1. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. Mechanical and Aerospace Engineering Department, Arizona State University, Tempe, AZ 85287

Abstract

In the present work, a numerical method has been applied to model the water evaporation rate of a glazed collector/regenerator component of an open-cycle absorption refrigeration system. This two-dimensional model calculates local heat and mass-transfer coefficients as part of the solution. The air flow in the glazed channel is driven by the combined buoyancy of both heat and mass transfer (water evaporation). Since the heat and mass-transfer coefficients each depend on both of the driving potentials determined by local conditions in the falling film, a solution of the conjugate problem is required. The resulting nonuniform air-film interface conditions cause the local heat and mass transfer to differ significantly from the uniform boundary condition case. The glazed collector/regenerator is much less sensitive to the ambient temperature and humidity than the unglazed collector. The addition of a glazing over the collector/regenerator provides a significant performance improvement and enhances solution regeneration in a windy humid climate. The glazed collector/regenerator water evaporation rate is higher relative to the unglazed case because the reduction in convective and radiative heat losses increases the absorbent temperature and vapor pressure sufficiently to overcome the concomitant reduction in the mass-transfer coefficient.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3