Unlocking Organizational Potential: A Computational Platform for Investigating Structural Interdependence in Design

Author:

Olson Jesse1,Cagan Jonathan2,Kotovsky Kenneth3

Affiliation:

1. Northrop Grumman Corporation, Johnstown, PA 15901

2. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

3. Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

A team’s design—the structuring of its resources and flows of knowledge—is an important element determining its effectiveness. An essential element in achieving a team’s problem-solving potential is the role that interdependence, in both the task and the organization, plays in determining the dynamic and emergent system-level properties of the organization. In this paper, we present a computational platform for experimentally investigating the influence of informational dependencies found in the design of a complex system for exploring their role in determining system behaviors and performance. The approach presented in this paper is a multiagent simulation of the conceptual design of space mission plans by Team X, an advanced project design group at NASA’s Jet Propulsion Laboratory. The algorithm is composed of rich descriptive models of both the team-types and timing of interactions, collaborative methods, sequencing, rates of convergence- and the task-primary variables, their behaviors and relations, and the approaches used to resolve them. The objective is to create an environment of interaction representative of that found in actual design sessions. Better understanding how the dynamics arising from organizational and domain interdependencies impact an organization’s ability to effectively resolve its task should lead to the development of guidelines for better coping with task complexities, suggest ways to better design organizations, as well as suggest ways for improving the search for innovative solutions.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference24 articles.

1. Olson, J. , 2006, “The Collective Potential: Achieving Organizational Potential by Design,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

2. Structural Change and Learning Within Organizations;Carley

3. Complexity Theory and Organizational Science. (Perspective);Anderson;Org. Sci.

4. Computational Organization Theory;Carley

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3