A Combinatorial Approach for Constructing Lattice Structures

Author:

Verma Chaman Singh1,Rankouhi Behzad2,Suresh Krishnan2

Affiliation:

1. Systems Science Laboratory, Palo Alto Research Center, Palo Alto, CA 94304

2. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Abstract

Abstract Lattice structures exhibit unique properties including a large surface area and a highly distributed load-path. This makes them very effective in engineering applications where weight reduction, thermal dissipation, and energy absorption are critical. Furthermore, with the advent of additive manufacturing (AM), lattice structures are now easier to fabricate. However, due to inherent surface complexity, their geometric construction can pose significant challenges. A classic strategy for constructing lattice structures exploits analytic surface–surface intersection; this, however, lacks robustness and scalability. An alternate strategy is voxel mesh-based isosurface extraction. While this is robust and scalable, the surface quality is mesh-dependent, and the triangulation will require significant postdecimation. A third strategy relies on explicit geometric stitching where tessellated open cylinders are stitched together through a series of geometric operations. This was demonstrated to be efficient and scalable, requiring no postprocessing. However, it was limited to lattice structures with uniform beam radii. Furthermore, existing algorithms rely on explicit convex-hull construction which is known to be numerically unstable. In this paper, a combinatorial stitching strategy is proposed where tessellated open cylinders of arbitrary radii are stitched together using topological operations. The convex hull construction is handled through a simple and robust projection method, avoiding expensive exact-arithmetic calculations and improving the computational efficiency. This is demonstrated through several examples involving millions of triangles. On a typical eight-core desktop, the proposed algorithm can construct approximately up to a million cylinders per second.

Funder

National Science Foundation

Technical Data Analytics

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference24 articles.

1. Design and Analysis of Lattice Structures for Additive Manufacturing;Beyer;ASME J. Manuf. Sci. Eng.,2016

2. Design of Lattice Structure for Additive Manufacturing;Tao,2016

3. A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting;Aremu,2014

4. Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting;Yan;Int. J. Mach. Tools Manuf.,2012

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3