Efficient Gradient-Based Tolerance Optimization Using Monte Carlo Simulation

Author:

Bowman R. Alan1

Affiliation:

1. Union Graduate College, 807 Union Street, Lamont House, Schenectady, NY 12308

Abstract

A gradient-based optimization approach is employed to select design tolerances for the component dimensions of a mechanical assembly to minimize manufacturing cost while achieving a desired probability of meeting functional requirements, known as the yield. Key to the feasibility of such an approach is to be able to use Monte Carlo simulation to make estimates of the derivatives of the yield with respect to the design tolerances quickly and accurately. A new approach for making these estimates is presented and is shown to be far faster and more accurate than previous approaches. Gradient-based optimization using the new approach for estimating the derivatives is applied to example problems from the literature. The solutions are superior to all previously published solutions and are obtained with very reasonable computer run times. Additional advantages of a gradient-based approach are described.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference12 articles.

1. A Comprehensive Review of Tolerancing Research;Hong;Int. J. Prod. Res.

2. Comparison of Assembly Tolerance Analysis by Direct Linearization and Modified Monte Carlo Simulation Methods;Gao

3. Tolerances: Their Analysis and Synthesis;Lee;ASME J. Eng. Ind.

4. Optimization of Design Tolerances Through Response Surface Approximations;Jordaan;ASME J. Manuf. Sci. Eng.

5. Optimal Tolerance Allotment Using a Genetic Algorithm and Truncated Monte Carlo Simulation;Lee;Comput.-Aided Des.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3