Critical Wavelengths for Gap Nucleation in Solidification— Part II: Results for Selected Mold-Shell Material Combinations

Author:

Yigit F.1,Hector, L. G.2

Affiliation:

1. Department of Mechanical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

2. Surface Science Division, Alcoa Technical Center, Alcoa Center, PA 15069

Abstract

In this second part, we examine the contact pressure ratio, Ptr, at the lowest points of the upper mold surface troughs in a directional solidification process using the theoretical methodology developed in Part I. Since there is ample experimental evidence that the mold surface topography affects gap nucleation at the mold-shell interface and the uniformity of the shell, we explore how the wavelength of the upper mold surface impacts the evolution of Ptr for specific material combinations and process parameters. For this purpose, the mold-shell materials are assumed to be combinations of four pure materials, viz., aluminum, copper, iron and lead: these materials offer a wide range of thermal and mechanical properties. Critical wavelengths, for which Ptr and its time derivative simultaneously equal zero, are predicted for all mold-shell material combinations. The theoretical model also predicts the existence of wavelength bands which are delimited by upper and lower critical wavelengths. All wavelengths that lie within the bands lead to gap nucleation, whereas all wavelengths that lie outside of the bands do not. The effects of distortivity ratio, which is a measure of the extent to which the mold-shell interface deforms under a given thermal loading, and selected process parameters (such as the mean mold thickness, contact resistance, and pressure) on bandwidth size, are considered in detail. Extensions of the present work to more sophisticated models that might lead to rudimentary mold topography design criteria are considered. [S0021-8936(00)03301-8]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3