Enhancement of Plastering Effect on Strengthening Wellbore by Optimizing Particle Size Distribution of Wellbore Strengthening Materials

Author:

He Wenhao1,Hayatdavoudi Asadollah1,Chen Keyong2,Sawant Kaustubh1,Zhang Qin3,Zhang Chi1

Affiliation:

1. Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, LA 70506 e-mail:

2. College of Energy Resources, Chengdu University of Technology, Chengdu, Sichuan 610059, China e-mail:

3. Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec QCH3A0C3, Canada e-mail:

Abstract

Wellbore strengthening materials (WSMs) have been widely used to strengthen the wellbore stability and integrity, especially those lost circulation materials (LCMs) used for mud loss impairment. To enhance the wellbore strengthening effect rather than a loss impairment, plastering effect can be used to increase the fracture gradient of the wall and minimize the probability of inducing new fractures. This is done by smearing the mudcake and pores and forming an internal cake inside the rock matrix using WSMs (or LCMs). Until now, the particle size distribution (PSD) of LCMs have been widely studied for the minimization on the mud loss (e.g., Abran’s rule, ideal packing theory, D90 rule, Halliburton D50 rule, etc.). However, there are few empirical rules focused on the maximum wellbore strengthening effect. This study attempts to find the desired PSD of plastering materials to enhance wellbore stability. In this research, the Brazilian test was used to quantify tensile strength. Meanwhile, the filtration characteristics of WSMs through the rock matrix were observed using a scanning electron microscope (SEM) and an energy-dispersive system (EDS). Finally, this paper adopts D50 of WSMs to be the mean pore throat size for a maximum improvement on the rock tensile strength. We have observed that the closer the D50 of WSMs in the WSMs to the mean pore throat size, the stronger the saturated rock matrix.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3