Radiation Heat Transfer in Fluidized Beds: A Comparison of Exact and Simplified Approaches

Author:

Flamant G.1,Lu J. D.1,Variot B.1

Affiliation:

1. Institut de Science et de Ge´nie des Mate´riaux et Proce´de´s, C.N.R.S., B.P. No. 5, Odeillo—66125—Font-Romeu Cedex, France

Abstract

Radiation heat transfer at heat exchanger walls in fluidized beds has never been examined through a complete formulation of the problem. In this paper a wall-to-bed heat transfer model is proposed to account for particle convection, gas convection, and radiation exchange in a variable porosity medium. Momentum, energy, and intensity equations are solved in order to determine the velocity, temperature, radiative heat flux profiles and heat transfer coefficients. The discrete-ordinates method is used to compute the radiative intensity equation and the radiative flux divergence in the energy equation. Both the gray and the non-gray assumptions are considered, as well as dependent and independent scattering. The exact solution obtained is compared with several simplified approaches. Large differences are shown for small particles at high temperature but the simplified solutions are valid for large particle beds. The dependency of radiative contribution on controlling parameters is discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3