Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, MO 65401
Abstract
Natural convection in laminar boundary layers along slender vertical cylinders is analyzed for the situation in which the wall temperature Tw(x) varies arbitrarily with the axial coordinate x. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a nonsimilar transformation and the resulting system of equations is then solved by a finite difference method in conjunction with the cubic spline interpolation technique. As an example, numerical results were obtained for the case of Tw(x) = T∞ + axn, a power-law wall temperature variation. They cover Prandtl numbers of 0.1, 0.7, 7, and 100 over a wide range of values of the surface curvature parameter. Representative local Nusselt number as well as velocity and temperature profiles are presented. Correlation equations for the local and average Nusselt numbers are also given.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献