Suppression of Irregular Frequency Effect in Hydrodynamic Problems and Free-Surface Singularity Treatment

Author:

Liu Yujie1,Falzarano Jeffrey M.1

Affiliation:

1. Marine Dynamics Laboratory, Department of Ocean Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

Multibody operations are routinely performed in offshore activities, for example, the floating liquefied natural gas (FLNG) and liquefied natural gas carrier (LNGC) side-by-side offloading case. To understand the phenomenon occurring inside the gap is of growing interest to the offshore industry. One important issue is the existence of the irregular frequency effect. The effect can be confused with the physical resonance. Thus, it needs to be removed. An extensive survey of the previous approaches to the irregular frequency problem has been undertaken. The matrix formulated in the boundary integral equations will become nearly singular for some frequencies. The existence of numerical round-off errors will make the matrix still solvable by a direct solver, however, it will result in unreasonably large values in some aspects of the solution, namely, the irregular frequency effect. The removal of the irregular effect is important especially for multibody hydrodynamic analysis in identifying the physical resonances caused by the configuration of floaters. This paper will mainly discuss the lid method on the internal free surface. To reach a higher accuracy, the singularity resulting from the Green function needs special care. Each term in the wave Green function will be evaluated using the corresponding analysis methods. Specifically, an analytical integral method is proposed to treat the log singularity. Finally, results with and without irregular frequency removal will be shown to demonstrate the effectiveness of our proposed method.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference34 articles.

1. On the Motion of Floating Bodies II;Commun. Pure Appl. Math.,1950

2. Oscillation of Cylinders in or Below the Free Surface of Deep Fluids,1967

3. Short Surface Waves Due to an Oscillating Immersed Body;Proc. R. Soc. A: Math., Phys. Eng. Sci.,1953

4. Improved Integral Formulation for Acoustic Radiation Problems;J. Acoust. Soc. Am.,1968

5. The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems;Proc. R. Soc. A: Math., Phys. Eng. Sci.,1971

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3