Affiliation:
1. Department of Mechanical Engineering, University of Texas at Austin, 204 East Dean Keeton Street, Austin, TX 78712-1591 e-mail:
Abstract
This paper presents the development of a prototype exfoliation tool and process for the fabrication of thin-film, single crystal silicon, which is a key material for creating high-performance flexible electronics. The process described in this paper is compatible with traditional wafer-based, complementary metal–oxide–semiconductor (CMOS) fabrication techniques, which enables high-performance devices fabricated using CMOS processes to be easily integrated into flexible electronic products like wearable or internet of things devices. The exfoliation method presented in this paper uses an electroplated nickel tensile layer and tension-controlled handle layer to propagate a crack across a wafer while controlling film thickness and reducing the surface roughness of the exfoliated devices as compared with previously reported exfoliation methods. Using this exfoliation tool, thin-film silicon samples are produced with a typical average surface roughness of 75 nm and a thickness that can be set anywhere between 5 μm and 35 μm by changing the exfoliation parameters.
Subject
Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Precision Silicon Exfoliation Tool Design;Journal of Manufacturing Science and Engineering;2022-09-27