Experimental and Numerical Study on the Evolution of Mechanical Properties During Spiral Pipe Forming

Author:

Cooreman Steven1,Van Hoecke Dennis1,Liebeherr Martin1,Thibaux Philippe1,Yamaguti Enderlin Mary2

Affiliation:

1. ArcelorMittal Global R&D, Zelzate, Belgium

2. ArcelorMittal Europe - Flat Products, Bremen, Germany

Abstract

Large diameter spiral welded pipes are produced from hot rolled coil. The forming of a spiral pipe out of a coil is a sequence of cold deformation steps which are: decoiling, levelling and 3-roll forming (followed by seam welding). Obviously the material experiences a quite complex deformation history since several strain reversals occur during the different steps. A further complexity is that the strain history will even vary along the thickness as it mainly concerns bending deformation. It is therefore not at all surprising that the mechanical properties on pipe and coil are different. The steel manufacturer is able to control the production of the steel within well-defined process limits. Consequently he can guarantee the properties of his product, i.e. the coil. However, the spiral pipe manufacturer only has limited possibilities to control the steel properties but eventually he is responsible for the properties of his product, i.e. the pipe. A detailed understanding of how spiral pipe forming affects the mechanical properties would definitely help steel mills to specify and target coil strength to ensure the final pipe strength. Therefore an experimental study was launched in which a 4-point bending setup was used to reproduce the different forming steps on lab scale. The mechanical properties were measured at intermediate process steps, i.e. on coil, after levelling, after pipe forming and after subsequent flattening. The last step was included because, in practice, the mechanical properties along the pipe transverse direction are typically measured using flattened tensile samples, i.e. after introduction of an additional cold deformation step with strain reversal. The advantages of this experimental approach are twofold: first, one has full control and knowledge on the deformations introduced during the different steps. Second, the typical statistical variation of mechanical properties from coil to coil or even within one coil is far less pronounced as all samples are taken within a relatively short distance from each other. For a more detailed understanding of the experimental study, an efficient Finite Element model to simulate spiral pipe forming was developed in Abaqus. A nonlinear kinematic-isotropic hardening law was applied to describe the material behavior. In this way it was possible to capture both yield point elongation and the well-known Bauschinger phenomenon. This paper summarizes numerical and experimental results for a 16mm thick X70 grade, where different production parameters (leveller settings, ratio of wall thickness to outer diameter) were considered.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3