Noise-Statistics Learning of Automotive-Grade Sensors Using Adaptive Marginalized Particle Filtering

Author:

Berntorp Karl1,Di Cairano Stefano1

Affiliation:

1. Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139 e-mail:

Abstract

This paper presents a method for real-time identification of sensor statistics especially aimed for low-cost automotive-grade sensors. Based on recent developments in adaptive particle filtering (PF) and under the assumption of Gaussian distributed noise, our method identifies the slowly time-varying sensor offsets and variances jointly with the vehicle state, and it extends to banked roads. While the method is primarily focused on learning the noise characteristics of the sensors, it also produces an estimate of the vehicle state. This can then be used in driver-assistance systems, either as a direct input to the control system or indirectly to aid other sensor-fusion methods. The paper contains verification against several simulation and experimental data sets. The results indicate that our method is capable of bias-free estimation of both the bias and the variance of each sensor, that the estimation results are consistent over different data sets, and that the computational load is feasible for implementation on computationally limited embedded hardware typical of automotive applications.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Sensor Fusion for Joint Vehicle Localization and Road Mapping Using Onboard Sensors;2023 26th International Conference on Information Fusion (FUSION);2023-06-28

2. H-infinity adaptive observer enhancements for vehicle chassis dynamics-based navigation sensor fault construction;International Journal of Advanced Robotic Systems;2020-03-01

3. Particle Filtering for Automotive: A survey;2019 22th International Conference on Information Fusion (FUSION);2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3