Facile Synthesis of Uniform Calcite Microcubes and Their Enhanced Tribological Performance in Lithium-Based Commercial Grease

Author:

Akhtar Khalida1,Hussain Abid1,Gul Muhammad1,Khalid Hina1,Yousaf Zai Saniya1

Affiliation:

1. National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan e-mail:

Abstract

This study describes a facile synthesis of calcium carbonate (CaCO3) monodispersed fine particles from an abundant indigenous and economical source (quicklime) and its enhanced tribological performance as a green additive in commercial lithium grease (CLG). The effects of various experimental parameters on particle morphology were thoroughly examined, and the conditions were optimized. The synthesized uniform particles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, and thermogravimetric (TG) /differential thermal analysis (DTA), and their results confirmed the calcite structure of the synthesized particles. The friction and wear studies were carried out under the applied load of 0.863 N at an ambient temperature for 5 min. The tribological performance of various amounts (1–7%) of cubic-CaCO3 (CCC) particles in CLG showed that 5 wt. % of CCC was the optimum concentration as additive in the present case. For comparison purposes, a commercial CaCO3 powder was used and a decrease in the friction coefficient of CLG was observed to be 33.4% and 16.4% for 5 wt. % CCC and commercial CaCO3 additives, respectively. The significantly enhanced antiwear and antifriction performance of the optimum CCC-CLG in comparison with the blank and commercial CaCO3-additized CLG was quite encouraging, and extensive studies in a real machine-operating environment are in progress for evaluation of the CCC-CLG blend to be used as an economical, green, and high-performance lubricant in mechanical components.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3