Cartilage Thickness Distribution Affects Computational Model Predictions of Cervical Spine Facet Contact Parameters

Author:

Womack Wesley1,Ayturk Ugur M.1,Puttlitz Christian M.1

Affiliation:

1. Orthopedic Bioengineering Research Laboratory, Department of Mechanical Engineering, and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1374

Abstract

With motion-sparing disk replacement implants gaining popularity as an alternative to anterior cervical discectomy and fusion (ACDF) for the treatment of certain spinal degenerative disorders, recent laboratory investigations have studied the effects of disk replacement and implant design on spinal kinematics and kinetics. Particularly relevant to cervical disk replacement implant design are any postoperative changes in solid stresses or contact conditions in the articular cartilage of the posterior facets, which are hypothesized to lead to adjacent-level degeneration. Such changes are commonly investigated using finite element methods, but significant simplification of the articular geometry is generally employed. The impact of such geometric representations has not been thoroughly investigated. In order to assess the effects of different models of cartilage geometry on load transfer and contact pressures in the lower cervical spine, a finite element model was generated using cadaver-based computed tomography imagery. Mesh resolution was varied in order to establish model convergence, and cadaveric testing was undertaken to validate model predictions. The validated model was altered to include four different geometric representations of the articular cartilage. Model predictions indicate that the two most common representations of articular cartilage geometry result in significant reductions in the predictive accuracy of the models. The two anatomically based geometric models exhibited less computational artifact, and relatively minor differences between them indicate that contact condition predictions of spatially varying thickness models are robust to anatomic variations in cartilage thickness and articular curvature. The results of this work indicate that finite element modeling efforts in the lower cervical spine should include anatomically based and spatially varying articular cartilage thickness models. Failure to do so may result in loss of fidelity of model predictions relevant to investigations of physiological import.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3