A Simultaneous Variable Solution Procedure for Laminar and Turbulent Flows in Curved Channels and Bends

Author:

Wang Jianrong1,Shirazi Siamack A.1

Affiliation:

1. Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104

Abstract

Direct Numerical Simulation of turbulent flow requires accurate numerical techniques for solving the Navier-Stokes equations. Therefore, the Navier-Stokes equations in general orthogonal and nonorthogonal coordinates were employed and a simultaneous variable solution method was extended to solve these general governing equations. The present numerical method can be used to accurately predict both laminar and turbulent flow in various curved channels and bends. To demonstrate the capability of this numerical method and to verify the method, the time-averaged Navier-Stokes equations were employed and several turbulence models were also implemented into the numerical solution procedure to predict flows with strong streamline curvature effects. The results from the present numerical solution procedure were compared with available experimental data for a 90 deg bend. All of the turbulence models implemented resulted in predicted velocity profiles which were in agreement with the trends of experimental data. This indicates that the solution method is a viable numerical method for calculating complex flows. [S0098-2202(00)01803-4]

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3