Affiliation:
1. Pratt & Whitney, East Hartford, CT
2. Scientific Research Associates, Glastonbury, CT
Abstract
A combined experimental/computational study has been performed for flow in rotating serpentine passages which approximate internal cooling passage for turbine blades. Experimental results are presented in the companion, Part I. The numerical simulations were performed using detailed experimental velocity profile measurements, documented in Part I, to set inflow conditions. Incompressible flow predictions with a two-layer k-ε turbulence model, which isolated the Coriolis induced secondary flow, agreed well with the measured velocities. Fluid density variations were included in compressible flow simulations which show the impact of the centrifugal buoyancy force in addition to the Coriolis force. Comparison with previously acquired heat transfer data indicates that the buoyancy force may be important in gas turbine applications.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献