Optical Parameters in High-Efficiency Optical Receivers With a Parabolic Reflector Before and After Coating With Ag Film

Author:

Jui Lee Chung1,Fin Lin Jen2

Affiliation:

1. Industrial Technology Research Institute, ITRI South Campus, Regional Industrial Service Department, Tainan 709, Taiwan e-mail:

2. Department of Mechanical Engineering, Center for Micro/Nano Science and Technology, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 701, Taiwan e-mail:

Abstract

High-efficiency optical receivers before and after the coating of Ag film are composed of a parabolic reflector, a solid parabolic second optical element (SOE), and a Fresnel/aspheric concentrating lens. The optical receivers before the Ag-film coating are fabricated on a high-precision machine tool based on an optimum design attained from ray tracing software simulations. The real profiles of the reflector before and after coating the Ag film are found to be the average of the two orthogonal parabolic profiles. They are then compared to the perfect profile (without profile error and surface roughness) in order to investigate the influence of the profile error and the Ag film on optical performances. The optical parameters, including the total flux, the optical efficiency, and the maximum, minimum, and mean irradiances are evaluated for ray projection simulations in the ASTM G173-03 spectrum. Experiments for the same ray source are also carried out to compare with the simulation results. It is determined that Ag-film coating can improve the profile error and surface roughness of the reflector, thus resulting in all optical parameters being either equal to or higher than those of the reflector without Ag coating. The total flux and optical efficiency obtained from the module with the Fresnel lens has values relatively higher than those of the aspheric lens. The irradiance uniformity for the Fresnel lens is also determined to be better than that of the aspheric lens. The irradiance intensity of the reflector after coating the Ag film has a magnitude at various wavelengths higher than that of the reflector without the Ag-film coating. Due to the coating of the Ag film, the optical receiver shows an almost constant rise in optical efficiency for the two types of concentrating lenses. This characteristic is shown to be valid for both the simulation and experimental results.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference52 articles.

1. Solar Cell Efficiency Tables;Prog. Photovoltaics,2009

2. Thin-Film Silicon Solar Cell Technology;Prog. Photovoltaics,2004

3. New Silicon Thin-Film Technology Associated With Original DC-DC Converter: An Economic Alternative Way to Improve Photovoltaic Systems Efficiencies;Energy,2011

4. Advances in High-Efficiency III-V Multijunction Solar Cell;Adv. OptoElectron.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3