Numerical Simulation of the Performance of a Sudden Expansion With Fence Viewed as a Diffuser in Low Reynolds Number Regime

Author:

Chakrabarti S.1,Rao S.1,Mandal D. K.2

Affiliation:

1. Department of Mechanical Engineering, Bengal Engineering and Science University, Shibpur, Howrah, West Bengal 711 103, India

2. Department of Basic Science and Humanities, College of Engineering and Management, Kolaghat, K.T.P.P. Township, Midnapore (East), West Bengal 721 171, India

Abstract

In this paper, the results of numerical simulation on the performance of a sudden expansion with fence viewed as a diffuser are presented. The two-dimensional steady differential equations for conservation of mass and momentum have been solved using the semi-implicit method for pressure-linked equations (SIMPLE) algorithm. The Reynolds number is in the range of 20–100 and fence subtended angle (FSA) between 10 deg and 30 deg. An aspect ratio of 2 is fixed for all the computations. The effect of each variable on average static pressure and diffuser effectiveness has been studied. Computations have revealed that for higher Reynolds number, the use of a fence always increases the effectiveness of the diffusion process when compared with a simple sudden expansion configuration. In low Reynolds number regime, depending on the positioning of the fence and the fence subtended angle, the fence may increase or decrease the diffuser effectiveness in comparison with sudden expansion without fence.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3