Upgrading of Waste Heat for Combined Power and Hydrogen Production With Nuclear Reactors

Author:

Zamfirescu C.1,Naterer G. F.1,Dincer I.1

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, L1H 74K, Canada

Abstract

This paper presents a new heat upgrading method that utilizes waste heat from nuclear reactors for thermochemical water splitting with a copper-chlorine (Cu–Cl) cycle. Through combined power, hydrogen, and oxygen generation, the exergy efficiency of a power plant can be significantly augmented. The heat rejected to the environment for moderator cooling, a relatively small amount of low pressure superheated steam and a small fraction of generated power, are extracted from the nuclear reactor and used to drive a Cu–Cl hydrogen plant. More specifically, the moderator heat transfer at ∼80°C is used as a source to a newly proposed vapor compression heat pump with a cascaded cycle, operating with retrograde fluids of cyclohexane (bottoming cycle) and biphenyl (topping supercritical cycle). Additionally, the heat pump uses as input the heat recovered from within the Cu–Cl cycle itself. This heat is recovered at two levels: ∼80–130°C and ∼250–485°C. This heat input is upgraded up to 600°C by work-to-heat conversion and then used to supply the endothermic water splitting process. The extracted steam is fed into the Cu–Cl cycle and split into hydrogen and oxygen as overall products. Electricity is partly used for an electrochemical process within the Cu–Cl cycle, and also partly for the heat pump compressors. This paper analyses the performance of the proposed heat pump and reports the exergy efficiency of the overall system. The proposed system is about 4% more efficient than generating electricity alone from the nuclear reactor.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3