Affiliation:
1. Engineering Design and Computing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstr. 3, Zurich CH-8092, Switzerland e-mail:
Abstract
Current approaches in computational design synthesis (CDS) enable the human designer to explore large solution spaces for engineering design problems. To extend this to support designers in embodiment and detail design, not only the generation of solution spaces is needed but also the automated evaluation of engineering performance. Here, simulation methods can be used effectively to predict the behavior of a product. This paper builds on a general approach to automatically generate solution spaces for energy and signal-based engineering design tasks using first-order logic and Boolean satisfiability. The generated concept model graphs (CMGs) are now in this paper automatically transformed into corresponding bond-graph-based simulation models. To do this, guidelines for creating partial simulation models for the available synthesis building blocks are presented. The guidelines ensure valid causality in the final simulation model. Considering the connections in the concept model graphs, the simulation models are automatically generated and simulated. The simulation results are then used to calculate different objectives, constraints, and performance metrics. The method is validated using automotive powertrains as a case study. One hundred and sixty-two different powertrain concepts are generated and evaluated, showing the advantages of electric powertrains with respect to CO2 emissions and the importance of considering intelligent control strategies in the future for hybrid ones.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献