Affiliation:
1. Institute of Mechanics, Otto von Guericke University, Magdeburg 39106, Germany
2. ABB Turbocharging, Baden 5401, Switzerland
Abstract
Abstract
This contribution investigates the influence of outgassing processes on the vibration behavior of a hydrodynamic bearing supported turbocharger rotor. The examined rotor is supported radially by floating rings with outer squeeze-film damping and axially by thrust bearings. Due to the highly nonlinear bearing properties, the rotor can be excited via the lubricating film, which results in subsynchronous vibrations known as oil-whirl and oil-whip phenomena. A significant influence on the occurrence of oil-whip phenomena is attributed to the bearing stiffness and damping, which depend on the kinematic state of the supporting elements, the thermal condition, and the occurrence of outgassing processes. For modeling the bearing behavior, the Reynolds equation with mass-conserving cavitation regarding the two-phase model and the three-dimensional (3D) energy as well as heat conduction equation is solved. To evaluate the impact of cavitation, run-up simulations are carried out assuming a fully (half-Sommerfeld) or partially filled lubrication gap. The resulting rotor responses are compared with the shaft motion measurement. Also, the normalized eccentricity, the minimum lubricant fraction, and the thermal bearing condition are discussed.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献