The Effects of Entrainment on Pore Shape in Keyhole Mode Welding

Author:

Wei P. S.1,Chao T. C.2

Affiliation:

1. Professor Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC e-mail:

2. Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC e-mail:

Abstract

This study theoretically investigates the effects of the entrainment accompanying mass, momentum, and energy transport on pore size during high power density laser and electron beam welding processes. The physics of macroporosity formation is not well understood, even though macroporosity often occurs and limits the widespread industrial application of keyhole mode welding. This work is an extension of a previous work dealing with collapses of keyholes induced by high intensity beam drilling. In order to determine the pore shape, this study, however, introduces the equations of state at the times when the keyhole is about to be enclosed and when the temperature drops to melting temperature. The gas pressure required at the time when keyhole collapses is determined by calculating the compressible flow of the two-phase, vapor–liquid dispersion in a vertical keyhole with varying cross sections, paying particular attention to the transition between annular and slug flows. It is found that the pore size increases as entrainment fluxes decrease in the lower and upper regions of the keyhole containing a supersonic mixture. The pore size also increases with decreasing total energy of entrainment and an increasing axial velocity component ratio between entrainment and mixture through the core region. With a subsonic mixture in the keyhole, the final pore size increases with entrainment fluxes in the lower and upper regions. This work provides an exploratory and systematical investigation of pore size induced by entrainment accompanied by mass, momentum, and energy transport during keyhole mode welding.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference35 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3