Inverse Heat Conduction Problem in Estimating Nuclear Power Plant Piping Performance

Author:

Cancemi S. A.1,Lo Frano R.1

Affiliation:

1. University of Pisa, Largo L. Lazzarino , Pisa 56122, Italy

Abstract

Abstract Most of today's operating nuclear plants that were originally designed for 30 or 40-year life are facing the long-term operation issues. Therefore, it is of meaningful importance to assess the time-dependent degradation and the aging of the relevant nuclear systems, structures, and components because of resulting loss of structural capacity. In this framework, the inverse method is implemented starting from temperatures at an accessible boundary, which are measured through a monitoring system. The reconstruction technique uses the elaborated signal provided by the monitoring system to determine temperature at inaccessible surface: this is the so-called inverse heat transfer problem. The inverse space marching method is applied. Analytical and numerical studies are performed taking into account thermal transient conditions in order to determine thermal loads. In particular, the developed code demonstrates to be able to reconstruct temperature and stress profiles in any section of the pipe with a good accuracy. In addition, the thermal loads obtained suggest that the investigated transient condition is not able to jeopardize the integrity of nuclear power plant, confirming the possibility of the plant extension of life.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference19 articles.

1. An Inverse Problem for Parabolic Partial Differential Equations With Nonlinear Conductivity Term;Scholarly Res. Exchange,2009

2. Comparison of Some Inverse Heat Conduction Methods Using Experimental Data;Int. J. Heat Mass Transfer,1996

3. Estimation of the Transient Surface Temperature and Heat Flux of a Steel Slab Using an Inverse Method;Appl. Therm. Eng.,2007

4. A Regularization Method for the Inverse Design of Solidification Processes With Natural Convection;Int. J. Heat Mass Transfer,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3